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Abstract. We present a new trust-region algorithm for solving nonlinear equality constrained optimization
problems. Quadratic penalty functions are employed to obtain global convergence. At each iteration a local change
of variables is performed to improve the ability of the algorithm to follow the constraint level set. Under certain
assumptions we prove that this algorithm globally converges to a point satisfying the second-order necessary
optimality conditions. Results of preliminary numerical experiments are reported.
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1. Introduction
We consider the equality constrained optimization problem

minimize f(x) a

subjectto ¢(x) =0

where x € W”; f: (" — Randc : K" — R™ are general nonlinear functions. It is assumed
that f and ¢ have continuous second-order derivatives.

We propose a new algorithm for (1.1) based, in part, on trust- reglon techniques. Trust-
region methods have proved to be very successful for unconstrained optimization problems,
e.g., Moré and Sorensen {23]. Other classical references on this topic are Fletcher [15], Gay
[16], Powell [25], and Schultz et al. [27]. Trust-region methods have also been applied to
equality constrained problems (e.g., Vardi [28], Byrd, Schnabel, and Schultz [4], Celis et al.
{6], and Liu and Yuan [21]), and to general nonlinear programming problems (see, e.g.,
Boggs et al. [1], Conn et al. [13], and the references therein). In the application of trust
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region methods to equality constrained problems there are two fundamental issues need to
be addressed: the specific definition of the trust-region subproblem and the choice of the
merit function. A natural way to apply trust-region ideas to problem (1.1) is to consider
the trust-region to the SQP subproblem, i.e., minimize a quadratic approximation to the
Lagrangian function subject to a linearization of the equality constraint and a trust-region
constraint at each iteration. More precisely, the following trust-region subproblem can be
solved for the search direction at an iterate x;:

minimize V f(x)7d + 3d” Mid
subjectto c(x;) + Afd =0 1.2
dll2 < Ax

where M, is the Hessian of the Lagrangian function L(x, A) = f(x) + ATe(x) at (xg, Ag)
or an approximation to it, A, = Vc(x), and A; > 0. However, a difficulty is that problem
(1.2) may be infeasible.

To overcome this difficulty, in [4] and [28] the authors replace the equality constraint
in (1.2) by a parameterized constraint, ac(x;) + AZd = 0, where 0 <« < 1. The resultant
subproblem is always feasible if « is chosen properly. However, it is not clear how to choose
the parameter ¢ effectively in practice. In [6] the equality constraint in (1.2) is relaxed
differently. The authors of [6] substitute an inequality constraint ||c(xx) + A,fd [l < 6 for
the equality constraint in (1.2), where 6; > 0 tends to zero as k<> co. A similar method
is presented in [26]. But these approaches are mainly of theoretical interest because no
efficient procedure has been designed for solving the subproblems derived from the above
relaxations. More recently, an algorithm aiming at the infeasibility problem was introduced
in [21].

A rather different trust-region algorithm was proposed in [24] where a trust-region step
is decomposed into two parts—a “normal” step and a “tangential” step (here normal and
tangential are with respect to the constraint surface)—which are computed by solving two
trust-region subproblems at each iteration. A parameter r € (6, 1) associated with the trust-
region radius is determined to give the proportion of the sizes of the normal step and
tangential step.

Our algorithm solves (1.1) by minimizing a sequence of quadratic penalty functions
{Pu(x) = fxX)+ ﬁ He @O g} where {i; > 0} monotonically decreases to zero. To obtain
possible fast local convergence, we use a specially designed trust-region method to minimize
Py, (x) for fixed u; > 0. The trust-region subproblems have no equality constraints hence
the infeasibility difficulty will not occur. At each iteration, we introduce a local change
of variables that forces the iterates to approximately follow the constraint level set. A key
feature of this strategy is that the value of ||c(x)||2 changes only slightly along the level set
and therefore long steps may be taken.

Hempel [20] presents an algorithm that uses this idea to formulate two coupled trust-
region subproblems and to update the current iterate by solving the two subproblems.
Under some strict assumptions, the algorithm in [20] is globally convergent with a local
R-superlinear convergence rate. A related algorithm is proposed in [9].

The change of variables also leads to an efficient block diagonal approximation to the
Hessian matrix of the quadratic penalty function. As a consequence, our algorithm obtains
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the next iterate at each iteration in two parts: a Newton step with a line search is calculated
in the subspace normal to the constraints and a trust-region subproblem is (approximately)
solved in the subspace tangent to the constraints. Due to the line search along the normal
direction, the algorithm automatically determines the sizes of the normal step and the
tangential step without introducing any new proportion parameters. We solve the trust-region
subproblem approximately using a two-dimensional subspace approach [5]. Improvement
is measured using.the quadratic penalty function p,, (x): From one iteration to the next the
algorithm always reduces the value of the quadratic penalty function for a fixed u;. The
decrease of p,, (x) leads to the global convergence of the algorithm.

The paper can be outlined as follows: In Section 2 we introduce the local change of
variables and describe our algorithm. Under appropriate assumptions, we show in Section 3
that the sequence generated by our algorithm converges to a point satisfying the second-
order necessary optimality conditions. In Section 4 some preliminary numerical results are
illustrated and discussed. Finally we make some concluding remarks in Section 5.

We use || - || to denote || - || except otherwise specified.

2. Algorithm

As mentioned in § 1, our strategy for solving problem (1.1) is to minimize a sequence
of penalty functions {p,,(x)} as p; tends to zero. Under certain assumptions the limit
point of the sequence of minimizers of p,, (x) is a local minimizer of (1.1). Unfortunately,
unconstrained minimization techniques often exhibit slow convergence when applied to
the quadratic penalty function. One reason for the slow convergence is that the Hessian
of p,,(x) is dominated, in some directions, by the constraint gradients when both y,; and
[lc(x)] are small and the iterate x is far away from a local minimizer of (1.1). This causes
most unconstrained minimization methods to compute steps almost entirely in the null space
of Vc(x), and to take very small steps to ensure that p,,, (x) decreases.

In this section, we develop a specially designed trust-region method for minimizing
Pu; (x). At each iteration a local change of variables is used to force the correction step to
move along a curve which approximately follows the constraint level set. This technique
provides a remedy for the slow convergence problem.

We introduce the change of variables as follows. At the current point x; € i”, let Ay =
Ve(x) € R, Suppose that the QR factorization of Ay is

-~ R
A = Qv Ry = [Yi Zi] [ Ok] =Yy Ry

where Q; € R"*" is orthogonal and Ry is an m x m upper triangular matrix. It is assumed
that A; has full column rank so that R, is nonsingular. In this case, Y, € #"*" and Z; €
REe—mxa et

up(h) = xi + sp(h) 2.3)
for h € R"*~™ where

se(h) = Zyh + Yo R T [c(xi) — c(xx + Zih)). 2.9
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The following result illustrates important properties of the penalty function p, (x) and the
constraint function c(x) along the path uy (%).

Lemma 2.1. Let p,(x)=f(x) + 7'/; ||c(x)||§ be the quadratic penalty function and let
uy(h) be defined in (2.3). Then

Vipu Uk (0) = ZI'V f(xp)
V2p,ui(0)) = ZIVEL(x) Zy = H,

where ViL(xy) = sz(xk) + Z7=1 (M) Vzcj (xx) and (Ay)j is the jth component of
the (least-squares) Lagrangian multiplier Ay = — R, ! YkTV f(xx). Moreover, if the second-
order derivative of c¢ is Lipschitz continuous, then

cur(h)) = c(x) + O(IA: ash — 0.

Proof: See Lemma 2.1 in [9] E]
Relation (2.5) tells us that the reduced gradient and the reduced Hessian of the Lagrangian
function (with respect to x) are equal to the gradient and the Hessian of the penalty function
(with respect to &), respectively. This property will be used in our algorithm.

Equality (2.6) indicates that along the path u,; (k) the value of ||c(x)|| varies only slightly
around 2 =0. It motivates us to follow the path when updating the iterates. Note that the
Lipschitz continuity of the second-order derivatives of ¢ is not required in our algorithm or
in the convergence analysis.

In order toreduce ||c(x)| in an appropriate manner, it may also be necessary to move along
the normal direction Y, v for some v € R™. Therefore, we consider the function DPulh,v) =
Pu(ur(h) + Yiv) for h € R*~ and v € M™. It follows from the chain rule that

Vi p Ty
vh_vﬁu(o,0)=[ ””"(0’0)] [Z" ”"("k)}

Vu5u(0,0) YV pu(xe)
and

A ZIV2L(x) Zs ZTW, Y,
V2 ,5u(0,0) = [ ¢ ‘

YWz, YT WYy + 4 ReR]

where Wy = V2 (x¢) + Y1) L22V2¢;(x).
The standard trust-region subproblem associated with p,, at (h, v) = (0, 0) is

minimize V4, 5,(0,0)7 § + %ATVZ,,, $u(0,0) §

subjectto  [|Sl < A
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where § = (W7, vT)7. It is well-known (e.g., [16]) that problem ( .7) can be characterized
by a linear system of the form

ZIViL(x) Zi + al, ZT WY, h ] ZIVp,(x)
YT W, Z, WiZi + - R R + al, YIVp,(xi)

where @ = (0 and the coefficient matrix (V7 #0000 + ce )b of system (2.8) is positive
serni-definte.

By Taylor's theorem, Z; V py, (x )+ Z] Wi ¥pv=Z[ Vp, (x+ Vi) = Z] V f (x+Yiv)).
Thus, the upper part of system (2.8) can he approximately written as (2] V2 L(x )07 +
2l = —ZIV fxp + ¥iv),

In addition, since A= YRy and Ay = — R, 'fl",-;J VoFlxe ), we have

¥YIVp, x) RRC'Y [v :xk)+Akc""‘)]

Rilphe  c(x)]
u

As u — 0, the matrix ﬁRk R] plays a dominant role in the lower part of system (2.8). Thus,
system %Rk RIv=-YIVp,(x) = ﬁRk[ukk —c(xp)] =~ — ﬁ Ryc(xy) is an approximation
to the lower part of system (2.8).

Therefore, system (2.8), hence problem (2.7), can be approximated by

Bi+al O h ZIVfa + Y
0 RT [|v c(xy)
where By is the reduced Hessian Hy = ZJ V2L(x;)Z; of the Lagrangian function or an
approximation to it. Note that the penalty parameter i is absent from system (2.10).

System (2.10) suggests that trust-region subproblem (2.7) can be (approximately) solved
in two steps. First solve

RZ v -C( Xk
for v, determine a step lenght 8 by a line search procedure as described below, then solve
minimize  (Z7V f (i + BY,v)) h + %hTBkh
subjectto Al < Ay
for some Ay > 0, and finally set x;+ = us(h) + BY;v, where h solves (2.12) and v is
given by (2.11).
To ensure that the penalty function p,(x) decreases, we perform the following back-

tracking line search to choose the step length 8 along the direction Y v at x;.

Set B8
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2. Until the line search condition

Pu(i + BYiv) — pu(x) < 0BV pu(x)” Vv 2.13)
is satisfied, choose a new 8 € [t/ 8, 12 8],

where 0 <o <1 and 0 < 1) < 15 <1 are given. As we will see in Lemmas 3.1 and 3.2, the
line search will always terminate and guarantee that the penalty function Py (x) decreases.

An important feature of our algorithm is that, for fixed u, the normal step v is calculated
only when x; is outside an envelope around the surface ¢(x)=0. More precisely, v is
computed only when [lc(x¢)l| > @ - max{||A¢l|/o, 1}. Otherwise, the subproblem (2.12) is
solved for h with v =0, and the next iterate will be x4, = ux (h) = x; + 51 (h).Dueto (2.6),
lle(x) || varies only mildly along the curve u, (k) beginning at 4 = 0.

At the beginning of this section we mentioned that the columns of the matrix Z; form an
orthonormal basis for the null space of A] . However, this does not completely specify Z;.
Moreover, if the choice of the basis for the null space changes significantly from one iterate
to the next, convergence of our algorithm cannot be achieved. Coleman and Sorensen [10]
investigate this issue and suggest several procedures for computing Z; when performing a
OR factorization of A;. Those procedures guarantee that Z (x) varies smoothly, locally. In
our algorithm, we use the approach of Coleman and Sorensen to compute Z; = Z(x;). For
details, see [10].

Our algorithm, Algorithm 2.1, is described in figure 1. For simplicity of discussion, the
reduced Hessian H, will be used for the rest of the paper instead of an approximation By.
Since the algorithm includes outer iterations and inner iterations, we use x,.(l) instead of x;
to denote the iterates, where i is the outer loop index (corresponding to u;) and / is the
inner loop index (for fixed y;). The intermediate iterates x,.(’) +8 Y,.(I)v are indexed by x,.(l+) .
Accordingly, we may have Zfl), Z,.(H), r®, Yi(H), Hi(l), and H'" etc.

For a fixed parameter ; an inner loop is employed to approximately minimize Pu; (%)
until the following conditions are satisfied.

T )] 172
a) (z°) V=) < w
B [e(x®)] = AP mi, 2.14)
¢ HP+61>0,
where A,@ = max{ II)»,Q) l/o, 1} and 6; > Otends to zeroasi — oo. After (2.14) is satisfied,
the parameter y; is reduced to ;| and a new inner loop starts. This process continues as

the parameter u; goes to zero.
In Algorithm 2.1, ¢ (h) = g(x?)Th + LhT H'"h where

gx) == Z(x)TV f(x),
and

x,.(l+) = x,.(’) if (2.14)-b) holds, or xi(l“ = xi(l) +p Yi(’)v otherwise
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Let pmin > O be the tolerance for y;. Let K > 0, 0 < p< 1l 0<o <]
0<7 <7Ty<1,and 0 <n <17y <1 Choose py > fimin, 0 < 8 < 1, an initial point
7y € R", and an initial trust region radius Aj > 0. Set i = 1.
Do
Set { :=0; z{” := z;_,; and AP = min{24;,, u¥°)
while any of the criteria in (2.14) does not hold (at a:(”)
if (2.14)-b) does not hold
Solve (RMTv{) = —c(z");
Find the step length ﬁ(’) > 0 by (2.13);
49 = 0 4 40 0,
else
2 = (e, v = 0)
end;
Compute h{" satisfying the three conditions (2.15) - (2. 17),
Calculate the ratio 7 = [p,, (ul"?(B)) = p (u W) / RO,
while r() <m
Set AP .= AP /4
Solve (2.12) to find an RY satisfying the conditions (2.15) - (2 17)
Calculate the ratio rf'),
end;
if r(‘)

>,
A(') —mm{2AS‘),n;&?./j H

end
A(_1+1) = AW,
s
z$l+1) = u (AW,
l=1+1
end; 0 6/5
=2 87:= AP pisr = min{pp, u{°};
;41 := min{pd;, 0,»8/5}; ii=i4
while Hi-1 > Hmins
Set z°":= z} and STOP;

Figure 1. Algorithm 2.1

In each inner loop we solve (2.11) when (and only when) (2.14)-b) does not hold. Next we
approximately solve the trust-region subproblem mm{q(l)(h) Al < A(’)} by computing

anh = h,g) with {|A| < AE ) satisfying the following three conditions (2.15)—(2.17).

Condition 1. There is a y; > 0 such that

g (h) < —n[|g("?)| min{A®, g (") /1 HY}- 2.15)
Condition 2. Thereis a y, > 0 such that

a®®) < (AP) Vi HIP) /72 (2.16)

where vmm(Hl.(H)) is the smallest eigenvalue of the matrix H,.(H')
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Condition 3. When H{'" is positive definite and |(H")~'z]l < A® for all g € %n—
satisfying llg("?) — 21l < ellg(x" )l
147+ 8(=)] < ella ()]

where 0 < € < 1/5is given

Note that, if € =0 in (2.17), h is the exact solution to the linear system H,.(H)h =
—g(x,.(l+)). As showed by Schultz et al. in [27], when € = 0, any A satisfying Conditions
1, 2 and 3 approximately solves the trust-region problem. In addition, the exact solution to
the trust-region subproblem satisfies all these conditions.

It follows from Algorithm 2.1 that

2P) < AP <’ (2.18)

and

ni = u.?f 51 for all i sufficiently large and u; < p u;~ forevery i (2.19)

The rule to update u; follows from the analysis in [19] where it is required that u; — 0 at
least linearly but slower than quadratic. Our numerical experiments suggest that u; should
not approach zero too quickly. In theory, the sequence {6;} can be any positive sequence
tending to zero. The choice in Algorithm 2.1 is the one we used in our numerical experiment.

3. Global convergence

In this section we analyze the global convergence properties of Algorithm 2.1. We begin this
section with our assumptions. Under these assumptions we show that all limit points of the
sequence generated by Algorithm 2.1 satisfy the first order necessary optimality conditions
to (1.1). Then we prove that if the number of limit points is finite, the primary sequence
converges to a point satisfying the second-order necessary optimality conditions.

Assumption 3.1. The sequence {x,-(l) } generated by Algorithm 2.1 is contained in an open

convex set D and the level set {x | p,,(x) < p,,(x0)} is bounded. In addition, the following
properties hold.

1. The functions f : {" — N, and ¢ : K — R™ and their first and second derivatives are
uniformly bounded in norm over D.
2. The matrix A(x) has full column rank, and there is a constant K such that
IAGAG®T AT < Ko

forall x € D.
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Note that (3.20) implies || ¥,” (R®)~T|| < Ko for all i and /.

Recall that the vector v(l) is calculated only when (2.14)- b) does not hold. The next two
results show that Y, @ (l) is a descent direction for p,,, at x ), the line search (2.13) will
terminate, and the sequence (P (x,( ))} is decreasing for fixed i.

Lemma 3.1. Suppose in Algorithm 2. |lc(x®)| > w; max{|AP /o, 1). Then
T O, O nT,o_ 1 O
me(x,. ) Yy, ="(xi ) A; ";,’"c(xi )" <0.
1

Consequently the line search condition (2.13) will be satisfied.

Proof: The equality in (3.21) follows from (2.9) and (2.11). The inequality holds because
0 <o < 1 and the condition [lc(x)|| > p; max{|A"||/o, 1} implies

()4 = e el RO e A
< (1-2) ke 6
<0. (3.24)

N((’))w from Theorem 6.3.2 in {13], the line search condition (2.13) will be satisfied by some
B O

U]

Lemma 3.2. The sequence {x;’ generated by Algorithm 2.1 satisfies

pu.( (l+l)) Pu ( (l)) <AO‘

Proof: Since x*" = 4 (1) and x' = u{*(0), it follows from the definition of r{”
and (2.15) that

Pale*") = pus17) =10 () < 0

If (2.14)-b) holds, then x* = x¥ and inequality (3.26) yields (3.25). If (2.14)-b) does not
hold, we have from (2.13) and (3.21) that

3 . 1
pua) = pu () £ 9B [0 AO = LI ] <0 (3.27)
Combining inequalities (3.26) and (3.27), we obtain (3.25). O

In Algorithm 2.1, for any fixed p; the penalty function p,,, (x) is minimized until (2.14)
is satisfied. In Lemmas 3.4 and 3.5 we illustrate that for any fixed u;, (2.14) holds after a



186 COLEMAN, LIU AND YUAN

finite number of inner iterations. Before doing that, we cite a lemma from [9] which says
that the step lengths {8} are uniformly bounded away from zero.

Lemma 3.3. Under Assumption 3 there is a constant B >0, such that for all i and |
the step length ,B,.(I) satisfies

BY > 8.

Proof: SeeLemma3 in [9]. 0

From (3.25) and (3.27), for any [ > [,

_ Oy ]2
Pulc) = )  pu () = i (1) 2 ot <y KB 5,

(

Thus, for fixed u;, inequality (2.14)-b) holds after a finite number of inner iterations.
Otherwise, [lc(x; )l > A u;, and we would have from (3.29) that

P (6P) = P (x9) < =0 (1 = B (AP 1y < —0(1 — 0)Bus <0.  (3.30)

Inequality (3.30) contradicts the fact that p,, (x) is bounded below for fixed u;. Therefore
we obtain the following result.

Lemma3.4. SupposeAssumption3.1is satisfied. Suppose {x‘,-(l) } is generated by Algorithm
2.1. Then for any fixed i there exists an integer I; > 0, such that for all | > I

leGO) < AL . (331)

Next we show that (2.14)-a) and (2.14)-¢) will be satisfied. To this end, let A > O be a
trust-region radius. Suppose that h satisfies Conditions 1-3 in Section 2 with A?’) = A.Using
Taylor’s theorem, we obtain that :

P (P ) — p, (1P (@)

= Vip (P @) h / V2p, @ @m)(1 - t)dr] h
Jo
1 1 I 1+
= ¢ W) +h" { fo [Vapu, (4 &) = Vipu, (! @)](1 - 1) df} h
Subtracting q,.(” (h) from both sides and then dividing both sides by q,.(l)(h), we have

I = 1= |pw (P @) = P (WP @)] = )] /|0 )|

i

h|l? 1 o DT -
» lqi!’)llh)l " /o [V P, (u P ) = Vi p (u P @)1 - 1) e
R L S y " A ‘ ‘
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Inequality (3.32) is used in the next lemma.

Lemma3.5. Suppose Assumption 3.1 is satisfied. Suppose {xi(')} is generated by Algorithm
2.1. Then for fixed u; > 0, there exists a subsequence of {x,.(l)}, 1 € L, such that

timg(x”) =0

I-00

and

im vaun (B () 2 0,

I-00

where g(x)=Zx)TV f(x), H(x) = Z(x)TV2L(x)Z(x) and vein(H (x")) denotes the
smallest eigenvalue of H (xi(l)).

4 ¢

Proof: Due to Lemma 3.4, we can assume that x; ~ =x; ) without loss of generality.

i
There are two possible cases: either

1. inf; Agl) =A>0,or ,
2. There exists an integer set £ such that A,q“) < A,q) and AEI) —0forlel

In case 1, suppose there exists an € > O such that, for all /, || g(x,.(’))ll'z €. Then, because
I1H® || < K, it follows from (2.15) in Condition 1 that

gP () < —yiemin{A, e/K} = —&
Recall that according to Algorithm 2.1, we have that for all /

P () = pu () < r2q° (1) = m g (B°) = -mE <0

But by the definition of p,, (x) we know that p,, (x) is bounded below, thus
Pu(x8") = pu(xP) > 0 as I > 0.
This contradiction establishes that there exists an integer set L such that

tim ()}, cz = 0.

l—>00

Now, suppose there exists an € > 0 such that, fog)azll l e I:',z Vmin(H (x,-(’))) < —€<0
Then, (2.16) in Condition 2 yields ¢ (¢") < —0¢ < —2%¢ < 0. Similar to (3.35),
this inequality contradicts the fact that p,, ) is bounded below. Therefore (3.33) and (3.34)
hold with an integer set £ C L.
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Incase 2, by Assumption 3.1, {x,-(l) }iez isinacompact set D. Thus there exists a convergent
subsequence. Without loss of generality, we assume that

AP >0 and xP >z forlel.
Recall that in Algorithm 2. if the radius AE’) decreases, there must be a previously tried
radius A%’ for which
1 - -
AP = ZAEI) and r =rP(AP) <y
Since Af’) — 0, we have

rP(AP)<n and AP >0 foriel (3.36)

Suppose || g(x)|| =2¢ > 0, thenfor! € c sufficiently large, || g(x,.(”)ll > €. It follows from
(2.15) thatforl € £

q,.(’)(h,fl)) < —pemin{A?, e/K} < —ylez&?)

since AP — 0. Thus, from (3.32), for I € £,

AD  pl

- A;
rOB) =1 < S [ VR 80 ()
Yie Jo

—Vi (4 (0)) [@d-vdr =0

This contradicts (3.36). Therefore (3.33) holds with £ = L. _
To show (3.34), suppose vgin(H (X)) < —2¢ <0. Then for I € ’AC sufficiently large,
vmin(H(x)) < €. Thus, (2.16) implies that for [ € £

Aq) 2
oy =&,

It follows from (3.32) that for [ € £
- "2 1
rO@0) -1l = 2 [ 192 w0 @)
0
V2P (P O)|1 - 1) dr > 0

since |’ || < A%}l — 0. This also contradicts (3.36). Therefore (3.34) holds with £ = £.
f \ . R O

Lemmas 3.4 and 3.5 indicate that for any fixed u; there exists an integer I > 0 such that
for all [ > [, the criteria in (2.14) are satisfied. From now on, for each fixed Wi, we will
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let I; denote the first integer > O for which (2.14) is satisfied. Therefore, Algorithm 2.
generates a sequence

{xi(l)] = {xfo), x{h—l) © , xélz—l) ‘xi(O)

=1
1 Xy s i

O X

We reindex the sequence {xi(l)}(i =1,2,..;0<l<lL—Das{x)k=12...In
other words, each given k has a one-to-one correspondence with a pair (i, /) such that
Xy = x,.(l). Itis clear that i — oo ask — oo.

Lemma 3.6. Suppose Assumption 3 is satisfied. Let {x;} = {x,.(l)} be the sequence gen
erated by Algorithm 2.1. Then

liminf(| Z(x0) "V f )l + lleGll) = 0.

Him sup Vimin (Z ()T V2L (xi) Z(x) + 6;1) = 0.

k—o00

Proof: Since (2.14) holds for [ = [;, u; tends to zero, {AS”')} is bounded (follows from
(2.14) and the definition of A,fl) after (2.14)), and 6; tends to zero, we have

tim (12(9) 97 )|+ [e(a)]) = 0

lim vein(Z(x")" V2L (x%)Z () + 6,1) >0

i—>00
That completes the proof. o

From the proof of Lemma 3.5 we see that Condition 1 yields (3.33), and Condition 2
implies (3.34). Thus, if 2’ does not satisfy Conditions 2 and 3, we can still establish (3.33)
from Condition 1. As we will see in the rest of this section, x; converges to a point satisfying
the first-order necessary optimality conditions if h?l) in Algorithm 2.1 satisfies Condition 1.
Before we prove in Lemmas 3.8 and 3.9 that all limit points of {x;} satisfy the first-order
necessary conditions, we cite another lemma from [9].

Lemma 3.7. Suppose Assumption 3.1 is satisfied. Assume {x,.(l) is generated by
Algorithm 2.1. Then

oo -1

o3 [ (") = P (5+)] < oo (3.37)

i=1 1=0
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Proof: See Lemma 3.4 in [9] £l

Because of (3.37), we are able to prove in Lemmas 3.8 and 3.9 that any limit points of
sequence {x;} described in Lemma 3.6 satisfy the first-order necessary optimality conditions.

Lemma 3.8. Suppose Assumption 3 is satisfied. Let {x;} = {x,.(’)} be the sequence
generated by Algorithm 2.1. Then

lim {c(x)]| = 0. (3.38)
k—> 00

Proof: Let

.
e M|

— ) he if lleGdll > Arpi;

dy =

Iy
0 otherwise.

By the definition of A, (after (2.14)), d; > 0. It is clear from Lemmas 3.1 and 3.4 that

0B d =0 4 < pu(x) = P (50) = P () = pu ()

which, with (3.37), implies that

o0
$ -
k=1

Therefore, lim;_, o di = O.
Notice that since 0 Ay > ||A«|l and A; > 1, we have that if ||c(xe)|| > App;,

li—

—

d? < +o00. (3.39)

[

e

i=1 I=

el = Gy m (Arllcn | = o ArlleCao)]
- [ leGeo) 112 ]
S A o)y
s o1 et (3.40)
Tel=a)Ap ™ '

Therefore, [lc(x)l| < max{;%-, Agu;}, which implies (3.38) since y; — 0 and d; — 0.
O

Lemma 3.9. Suppose Assumption 3. is satisfied. Let {x;} = {x,fl)} be the sequence gen-
erated by Algorithm 2.1, Then

Jim 120"V £ ol = 0. (3.41)
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Proof: Letg(x) = Z(x)TVf(x)and x( i) denote xf?r"l') (recall that x(l ) = x,(?r)l) We first
prove by contradiction that || g(x,.(’+)) f| = 0. Without loss of generality, we assume that for
any i there is an integer k;(0 < k; < [;) such that |g(x“ )|l > € > 0. Because of (3.20)

and the definition of v,.(”, it follows from (3.38) and Taylor’s theorem that for all 0 <1 < ;
and all i,

12(<)] = le(x? + BOY vP)| = le(=") | + O(le(=)])
Since ||g(x( ))Il < ul/z and u; — 0, (3.38) implies that IIg(x(' +))|| < ¢/2 for i sufficiently

large. Assume that ! = j; is the nearest index to k; in the set {{ € (k;, ;] : ||g(x(’))|| < €/2}.

Then [g(x)|| > /2 for all [ satisfying k; < I < j;. Hence, from (2.15), for k; <! <
Ji—1,

€ . €
pu () = pu (1), 2 —rPq® (80) = —ma (1) = m;‘ m[A,"’,—z?]

(3.43)

Inequality (3.43) leads to

Ji—1
p,;,( (k)) Pu,( (J:)) - Z[Pm(xi(l) Pu,( (l+l))]
771)’1 mm‘l‘j ]
771)/1 mllllz |i.lr' d }

lV

v

Combining (3.37) and (3.44), we have that Z,"”l ||h(') | = 0asi — oo. Recall that v(l) =0
whenever (2.14)-b) holds. It follows from Assumptlon 3.1 (2), (2.11), (3.39), and (3.40)
that

Ji Ji Ji
Z ||v,-(l) || =< Koz ||c(xi(’))|| < K—o Zdi(l) -0, asi—> oo
I=k; I=k; —% =k
Therefore, the continuity of u; (k) implies that there exists a constant K| > 0 such that

. Ji=1 i
FRIP » FAR L P O U o U B

ki+1
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as i — 00. Due to the continuity of Z(x) and V f (x) and-(3.46), we have that

le(x0) — g(xIP)| < /4

for all i sufficiently large. Therefore when i is sufficiently large,
leC“) = 18(”) — () + e 0)| < e/a+e/2=3¢/4

This contradicts the assumption that || g(x(" +))|| > ¢. Therefore ||g(xi(l+))|| —> 0. Then
(3.41) follows from (3.42) and (3.38). . e O

Now we further assume that the sequence {x} has only a finite number of limit points.
We end this section by showing in Theorem 3.1 that in this case there is actually only one
limit point and the second-order necessary optimality conditions are satisfied at this point.

Theorem 3.1. Let {x;} = {xl.(l)} be the sequence generated by Algorithm 2.1. Suppose
Assumption 3.1 is satisfied and there exist only a finite number of limit points to {x;}. Then

lim x; = x,
k—o0

where x, is a point at which the second-order necessary optimality conditions are satisfied.

Proof: We first prove by contradiction that the sequence converges. Suppose {x;} does
not converge. Since there are only finite number of limit points to {x;}, every limit point is
an isolated one. Thus, Lemma 4.10 of [23] yields that there exists a subsequence {xi,} of
{xr} and an € > 0 such that lxk,+1 — xi; || > € for all j. Inequality (3.45) shows that | vy||
tends to zero, which implies that [Ixe+1 —xkll:— O because of (2.18). This contradiction
shows that {x;} converges.

Note that 6; goes to zero in criterion (2.14)-c). Since {x;} converges to a point x,, from
Lemma 3.6, we know that the second-order necessary optimality conditions are satisfied
at x,. O

4. Preliminary numerical experiments

In the final section, we present preliminary computational results to illustrate the perfor-
mance of Algorithm 2.1. We test Algorithm 2.1 on a set of nonlinear equality constrained
problems from the CUTE collection [2] and our own test problems. To exhibit the important
role the local change of variables plays in Algorithm 2.1, we compare the implementations
of Algorithm 2.1 to a variation of our algorithm without the change of variables. All our
experiments were performed in MATLAB Version 4.1 on a Sun 4/670 workstation.

Table 1 gives a brief description of our test problem set. Most problems in Table 1
(all except TEST1 and TEST?) are selected from the CUTE collection [2]. These problems
represent different sizes (in terms of m and n). Problems TEST1 and TEST? are our own test
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Table 1. Description of problems.

Problems m nnz(A) Constraints
BT6 5 2 5 Nonlinear
BT11 5 3 8 Nonlinear
DTOC2 58 36 144 Nonlinear
DTOC4 29 18 65 Nonlinear
DTOC6 201 100 724 Nonlinear
GENHS28 300 298 894 Linear
MWRIGHT 5 3 8 Nonlinear
ORTHREGA 517 256 1792 Nonlinear
ORTHREGC 505 250 1750 Nonlinear
ORTHREGD 203 100 500 Nonlinear
TEST1 500 300 2308 Quadratic
TEST2 500 300 2661 Nonlinear

problems which we believe are hard problems. Problem TEST1 is to minimize a Rosenbrock
function [12] subject to some quadratic equality constraints, i.c.,

fl 1
-

minimize Z |r | — x4+ 100(x4 s ,.!.‘}- ]
7 4.47)

subject Lo a; x + SelMix =80, i=1... .m

wherea; e R, i=1,2,...,m, are vectors, and M; e R"*",i = 1,2, ..., m, are symmet-
ric. To increase nonlinearity, in the TEST2 problems we add some perturbation functions
to the objective function and the quadratic constraint functions in (4.47). Namely, we solve
the following problem:

dovityy n-l )
minimize Y [(1—x)* 4+ 100(xix — x7)"] + 8o(x)

) = . ) (4.48)
subjectto a; x +.5x Mix+8(x) 0 i=1,. ,m

where 8p(x), §;(x),i = 1,2, ..., m, are perturbation functions. The perturbation functions
are generated randomly to be linear combinations of polynomials, trigonometry functions,
logarithmic functions and exponential functions. For example, do(x) could be

So(x) = (xI + x4)2 +1.0+1log (1+x3 +x3)
+ 10 sin(27 x5) cos(2xg) — €5 4

In problems TEST1 and TEST2, the matrices [a;, a2, ., am] and M;,i = 1,2,...,m,
were created randomly.
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Let dyewion denote an approximation (defined in (4.50)) to the Newton direction and Aneg
denote a negative curvature direction. To reduce comyutational cost, we approximately
solve subproblem m1n{q,')(h) Iall2 < A(l) for Z; h by considering a 2-dimensional
subproblem at each iteration:

min{g"(h) : Ikll2 < AP, h € span{g(x!P), d}},
where

g = [ dewon it H"™ is positive definite.
reg otherwise

| B drwion + 8 (x7)} = €8 ()]

and
dnTegIJi(lHdneg < yvmin(H;(l+))”dneg"%-

In (4.51), y > 0 is a constant and viyin(H; (l+)) denotes the smallest eigenvalue of Hi(m.
In [5] it is proved that the solution to (4.49), h = h(') satisfies conditions 1-3 stated in
Section 2. In practice, inequality (4.51) is difficult to satisfy. We relax (4.51) and require
only d”TegH a+ dyeg < 0. However, this relaxation does have a (theoretical) cost; the resultant
algorithm no longer guarantees convergence to a point satisfying the second-order necessary
optimality conditions.

We compute the direction d by attempting the Cholesky factorization of H (x(’ ™y If
H (x(l+)) is positive definite, we solve (4.50) for an approximation to the Newton direction
dnewron- A negative curvature direction dy,, is obtained when the Cholesky factorization fails

(e.g., Section 4.4 in [17]). Such a direction d,,., satisfies dnTegH (I+)d,,eg <.
We use the curve technique, xx1| = x;+ + sx+ (h), only when necessary. In particular, we

take
Xl = Xy + Zyh 4.52)
when r; > 7,. Otherwise, we use the curve technique to update the iterates
Xyt = Xiq F Se (B),
where sy (h) = Zeh + Yoy R [eOs) — iy + Ziih)].
When solving problems in Table 1 using Algorithm 2.1, we set the stopping crite-
riontobe p < pimin = 10" We take o =6p = 1.0, Ag = || Z(x0)” V f (x0)||'/2, p = 0.1, and

o =0.0001. For both TEST1 and TEST2, the starting points are xo =[.5, .5, ..., .5]”. For
the test problems drawn from the CUTE collection, we take the CUTE default values.
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Table 2. Results using algorithm 2.1

Function evaluations

Number of

Problems iterations fic 8 A H error
BT6 10 69 20 10 01077
BT11 6 19 13 6 0(107%)
DTOC2 12 32 17 9 0(10™%)
DTOC4 3 7 7 3 0(107%)
DTOC6 50 126 59 50 0(107%)
GENHS28 2 4 4 2 o104
MWRIGHT 8 20 16 8 0(10™%)
ORTHREGA 32 295 49 30 0(1078)
ORTHREGC 8 24 17 8 010719
ORTHREGD 6 12 10 3 0(107%)
TEST1 15 29 25 15 0(107%)
TEST2 10 25 21 10 001077

Table 2 illustrates the results of our numerical experiments for problems in Table 1. The
first column states the names of the problems. The second column shows the number of
iterations needed to reach the stopping criteria. Column “function evaluations” gives the
number of function evaluations needed for different problems. Sub-columns “ f, ¢” indicate
the number of function evaluations needed for the functions f(x) and c(x), “g, A” for their
gradients, and “H” for the Hessians of the Lagrangian functions. On the sixth column the
quantity “error’” is defined as

error = \/Tz(x)"'Vf(x)llé + el 4.54)

where x is the approximate solution to (1.1).

We also solved the test problems from the CUTE collection in Table 1 using LANCELOT.
When running LANCELOT, we used second derivatives and set the stopping criterion to be
error < 107> where error is defined in (4.54). We present the resuits of our LANCELOT
experiments in Table 3.

Tables 2 and 3 suggest that Algorithm 2.1 is quite promising. We can see in Tables 2 and
3 that for most test problems Algorithm 2.1 takes fewer iterations and function evaluations
than LANCELOT. For a few problems (BT6, DTOC2 and ORTHREGA) Algorithm 2.1
takes more function evaluations for “ f” and “c” than LANCELOT. This is mainly due to
the line search procedure in Algorithm 2.1. But for the same problems. (BT6, DTOC2 and
ORTHREGA) Algorithm 2.1 takes fewer function evaluations for “g”, “A” and “H” than
LANCELOT.

Finally, we use problem DTOCS6 as an example to illustrate the essential role the local
change of variables plays in Algorithm 2.1. We use three variations of Algorithm 2.1 to
solve problem DTOCS. In the first variation we perform the change of variables at every
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Table 3. Results using LANCELOT.

Function evaluations

Number of

Problems iterations fic 8 A H error

BT6 28 28 25 28 0105y
BTII 19 19 20 19 0(10-%)
DTOC?2 18 18 18 18 0(107%)
DTOC4 17 17 17 17 01077
DTOC6 59 59 60 59 0(10-%)
GENHS28 6 6 7 6 01077
MWRIGHT 19 19 19 19 0(107%)
ORTHREGA 92 92 84 92 0(10~%)
ORTHREGC 30 30 28 30 0(1079)

ORTHREGD 44 44 40 44 0(107%)

Table 4. Comparison of different variations.

Function evaluations

Number of
Variations iterations fic 8, A H error
Variation 1 11 33 19 11 01077y
Variation 2 50 126 59 50 0(1075)
Variation 3 1170 1252 1182 1170 0(10‘4)

iteration. The second variation is the same one we used to obtain results in Table 2: we
try form (4.52) first and perform the change of variables when form (4.52) fails to provide
good trust-region ratios. In the third variation we do not perform any change of variables at
all and adopt form (4.52) for all iterations. The results are presented in Table 4.

Table 4 illustrates that the change of variables is significant to the performance of Algo-
rithm 2.1. From Table 4 we can see that the first and second variations work well and the
third one takes significantly more iterations and function evaluations to converge. Indeed,
for almost all problems we tested, the third variation works poorly. Table 4 also indicates
that the first variation is more efficient than the second for the particular problem DTOC6.
However, for most problems in Table 1, the second variation is the best.

The change of variables does have a cost. This can be seen by comparing (4.52) and
(4.53): an extra function evaluation and an extra solution of a triangular system. However,
our numerical experiment indicates that the total number of iterations is often reduced,
sometimes significantly. Therefore, the total number of function evaluations will also likely
be reduced. The solution of a triangular system is usually cheap.

We do not clearly see superlinear convergence for most of our test problems, probably
because we terminate the iteration before that occurs, i.e., y; is not sufficiently small yet.
A difficulty is that when u; is too small, some calculations are numerically unstable.
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Table 5. Results from [9].

Function evaluations

Number of

Problems iterations fic 8 A error

BT6 12 37 21 0(107%)
BTI1 9 25 18 o(10-"
DIPIGRI 16 70 27 0(107%)
DTOC2 12 17 17 0(1073)
DTOC4 4 8 8 Q(1075)
DTOC6 11 18 17 01079
GENHS28 6 9 8 0@107%)
HS100 17 75 29 01077
MWRIGHT 14 36 22 03105
ORTHREGA 83 883 91 0(10-%)
ORTHREGC 24 61 31 0107%)
ORTHREGD 21 90 38 0(107%)
TESTI 104 443 116 0(107%)
TEST2 149 526 161 0(107%)

Finally, it would be interesting to compare the performance of the new algorithm with that
of the algorithm proposed in [9]. Table 5 is from [9] except that the test problems DIPIGRI
and HS100 are not included here because we did not test them with the new algorithm (we
already have a few such small sized problems). For most problems, the new algorithm takes
fewer iterations and fewer function evaluations.

5. Concluding remarks

The quadratic penalty function is usually dismissed as a merit function for nonlinearly
constrained minimization for two reasons: The Hessian matrix of the penalty function
becomes singular as the solution is approached, and short steps must often be taken, when
far from the solution, due to the effect of the penalty term. Coleman and Hempel [8] and
Gould [8] have indicated how to circumvent potential problems due to Hessian singularity
at the solution. In this paper we have proposed a new technique which not only avoids
problems due to Hessian singularity at the solution, but also avoids excessively small steps
when far from the solution.

The crux of our new approach is a local transformation, defined at each iteration, and the
approximate solution of a trust-region problem in the new (local) variables which allows for
the efficient computation of a ‘large’ curved step in the original variables. This curved step
follows a quadratic approximation to the current constraint contour and therefore causes
little increase in the penalty term.

We have established global convergence properties and demonstrated how this tech-
nique can be efficiently implemented. Finally, we have provided computational results of
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preliminary numerical experiments. The computational and theoretical results indicate that
this approach has considerable practical potential for solving nonlinear equality-constrained
minimization problems.
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